Constrained Spectral Clustering using L1 Regularization

نویسندگان

  • Jaya Kawale
  • Daniel Boley
چکیده

Constrained spectral clustering is a semi-supervised learning problem that aims at incorporating userdefined constraints in spectral clustering. Typically, there are two kinds of constraints: (i) must-link, and (ii) cannot-link. These constraints represent prior knowledge indicating whether two data objects should be in the same cluster or not; thereby aiding in clustering. In this paper, we propose a novel approach that uses convex subproblems to incorporate constraints in spectral clustering and co-clustering. In comparison to the prior state-of-art approaches, our approach presents a more natural way to incorporate constraints in the spectral methods and allows us to make a trade off between the number of satisfied constraints and the quality of partitions on the original graph. We use an L1 regularizer analogous to LASSO, often used in literature to induce sparsity, in order to control the number of constraints satisfied. Our approach can handle both must-link and cannot-link constraints, unlike a large number of previous approaches that mainly work on the former. Further, our formulation is based on the reduction to a convex subproblem which is relatively easy to solve using existing solvers. We test our proposed approach on real world datasets and show its effectiveness for both spectral clustering and co-clustering over the prior state-of-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Spectral Clustering and applications

In this chapter we review the main literature related to kernel spectral clustering (KSC), an approach to clustering cast within a kernel-based optimization setting. KSC represents a least-squares support vector machine based formulation of spectral clustering described by a weighted kernel PCA objective. Just as in the classifier case, the binary clustering model is expressed by a hyperplane i...

متن کامل

On Tolerant Fuzzy c-Means Clustering with L1-Regularization

We have proposed tolerant fuzzy c-means clustering (TFCM) from the viewpoint of handling data more flexibly. This paper presents a new type of tolerant fuzzy c-means clustering with L1-regularization. L1-regularization is wellknown as the most successful techniques to induce sparseness. The proposed algorithm is different from the viewpoint of the sparseness for tolerance vector. In the origina...

متن کامل

L1-graph construction using structured sparsity

As a powerful model to represent the data, graph has been widely applied to many machine learning tasks. More notably, to address the problems associated with the traditional graph construction methods, sparse representation has been successfully used for graph construction, and one typical work is L1graph. However, since L1-graph often establishes only part of all the valuable connections betw...

متن کامل

Robust and Efficient Computation of Eigenvectors in a Generalized Spectral Method for Constrained Clustering

FAST-GE is a generalized spectral method for constrained clustering [Cucuringu et al., AISTATS 2016]. It incorporates the mustlink and cannot-link constraints into two Laplacian matrices and then minimizes a Rayleigh quotient via solving a generalized eigenproblem, and is considered to be simple and scalable. However, there are two unsolved issues. Theoretically, since both Laplacian matrices a...

متن کامل

Unifying Adversarial Training Algorithms with Flexible Deep Data Gradient Regularization

We present DataGrad, a general back-propagation style training procedure for deep neural architectures that uses regularization of a deep Jacobian-based penalty. It can be viewed as a deep extension of the layerwise contractive auto-encoder penalty. More importantly, it unifies previous proposals for adversarial training of deep neural nets – this list includes directly modifying the gradient, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013